- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bartholomaus, T C (1)
-
Dryak, M. C. (1)
-
Enderlin, E (1)
-
Enderlin, E. M. (1)
-
Liu, J (1)
-
Mikesell, T D (1)
-
Terleth, Y (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Glacier speedups occur on daily to centennial timescales. While basal water and subglacial drainage configuration are thought to drive glacier speedups across these timescales, it remains unclear whether this forcing always occurs through the same mechanisms. Here, we explore whether the enthalpy model of glacier surging can explain speedups over a broader range of timescales if modified to account for seasonality in surface melt and continuous water supply to the glacier bed. We simulate velocity oscillations that range from seasonal to years. Our model results more closely resemble observations of surges than previous model versions because ice flow variability at seasonal and multi‐year timescales is reproduced simultaneously through hydrological forcing. Under favorable conditions, seasonal water delivery to the bed gradually accumulates in a poorly‐connected basal drainage system, priming the glacier to surge. Surges themselves are marked by high water fluxes and enthalpy drainage from the glacier base.more » « less
-
Dryak, M. C.; Enderlin, E. M. (, Journal of Glaciology)Abstract Marine-terminating glaciers on the Antarctic Peninsula (AP) have retreated, accelerated and thinned in response to climate change in recent decades. Ocean warming has been implicated as a trigger for these changes in glacier dynamics, yet little data exist near glacier termini to assess the role of ocean warming here. We use remotely-sensed iceberg melt rates seaward of two glaciers on the eastern and six glaciers on the western AP from 2013 to 2019 to explore connections between variations in ocean conditions and glacier frontal ablation. We find iceberg melt rates follow regional ocean temperature variations, with the highest melt rates (mean ≈ 10 cm d −1 ) at Cadman and Widdowson glaciers in the west and the lowest melt rates (mean ≈ 0.5 cm d −1 ) at Crane Glacier in the east. Near-coincident glacier frontal ablation rates from 2014 to 2018 vary from ~450 m a −1 at Edgeworth and Blanchard glaciers to ~3000 m a −1 at Seller Glacier, former Wordie Ice Shelf tributary. Variations in iceberg melt rates and glacier frontal ablation rates are significantly positively correlated around the AP (Spearman's ρ = 0.71, p -value = 0.003). We interpret this correlation as support for previous research suggesting submarine melting of glacier termini exerts control on glacier frontal dynamics around the AP.more » « less
An official website of the United States government
